Shape change in the receptor for gliding motility in Plasmodium sporozoites.

نویسندگان

  • Gaojie Song
  • Adem C Koksal
  • Chafen Lu
  • Timothy A Springer
چکیده

Sporozoite gliding motility and invasion of mosquito and vertebrate host cells in malaria is mediated by thrombospondin repeat anonymous protein (TRAP). Tandem von Willebrand factor A (VWA) and thrombospondin type I repeat (TSR) domains in TRAP connect through proline-rich stalk, transmembrane, and cytoplasmic domains to the parasite actin-dependent motility apparatus. We crystallized fragments containing the VWA and TSR domains from Plasmodium vivax and Plasmodium falciparum in different crystal lattices. TRAP VWA domains adopt closed and open conformations, and bind a Mg(2+) ion at a metal ion-dependent adhesion site implicated in ligand binding. Metal ion coordination in the open state is identical to that seen in the open high-affinity state of integrin I domains. The closed VWA conformation associates with a disordered TSR domain. In contrast, the open VWA conformation crystallizes with an extensible β ribbon and ordered TSR domain. The extensible β ribbon is composed of disulfide-bonded segments N- and C-terminal to the VWA domain that are largely drawn out of the closed VWA domain in a 15 Å movement to the open conformation. The extensible β ribbon and TSR domain overlap at a conserved interface. The VWA, extensible β ribbon, and TSR domains adopt a highly elongated overall orientation that would be stabilized by tensile force exerted across a ligand-receptor complex by the actin motility apparatus of the sporozoite. Our results provide insights into regulation of "stick-and-slip" parasite motility and for development of sporozoite subunit vaccines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRAP Is Necessary for Gliding Motility and Infectivity of Plasmodium Sporozoites

Many protozoans of the phylum Apicomplexa are invasive parasites that exhibit a substrate-dependent gliding motility. Plasmodium (malaria) sporozoites, the stage of the parasite that invades the salivary glands of the mosquito vector and the liver of the vertebrate host, express a surface protein called thrombospondin-related anonymous protein (TRAP) that has homologs in other Apicomplexa. By g...

متن کامل

Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility

Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely underst...

متن کامل

In vitro activity of wALADin benzimidazoles against different life cycle stages of Plasmodium parasites.

wALADin1 benzimidazoles are specific inhibitors of δ-aminolevulinic acid dehydratase from Wolbachia endobacteria of filarial nematodes. We report that wALADin1 and two derivatives killed blood stage Plasmodium falciparum in vitro (50% inhibitory concentrations, 39, 7.7, and 12.8 μM, respectively). One of these derivatives inhibited gliding motility of Plasmodium berghei ANKA infectious sporozoi...

متن کامل

Morphogenesis of Plasmodium zoites is uncoupled from tensile strength

A shared feature of the motile stages (zoites) of malaria parasites is a cortical cytoskeletal structure termed subpellicular network (SPN), thought to define and maintain cell shape. Plasmodium alveolins comprise structural components of the SPN, and alveolin gene knockout causes morphological abnormalities that coincide with markedly reduced tensile strength of the affected zoites, indicating...

متن کامل

A unique profilin-actin interface is important for malaria parasite motility

Profilin is an actin monomer binding protein that provides ATP-actin for incorporation into actin filaments. In contrast to higher eukaryotic cells with their large filamentous actin structures, apicomplexan parasites typically contain only short and highly dynamic microfilaments. In apicomplexans, profilin appears to be the main monomer-sequestering protein. Compared to classical profilins, ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 52  شماره 

صفحات  -

تاریخ انتشار 2012